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ABSTRACT

‘We present a new and improved theory for small
apertures and obstacles in multimode waveguide, and
we show that for transverse discontinuities the result-
ing equivalent network differs from that obtained
from earlier theory by simple added series or shunt
elements. That simple network modification, how-
ever, yields greatly improved accuracy, as demon-
strated in a specific example,

1. INTRODUCTION

Small aperture/obstacle theory is one- of the
gems of microwave fleld theory in that it allows one
to derive, with very little work, very simple analytical
expressions for certain classes of waveguide discon-
tinuities. In fact, it permits one to establish simple
recipes for such derivations. In addition, those
expressions have been found to yield accurate
numerical values even somewhat outside their
expected range of validity.

The last of the above remarks (accurate values)
seems so far to be true only for discontinuities in a
waveguide that can support only a single mode.
Small aperture/obstacle theory has been extended to
the multimode waveguide case [1], and it was found
that simple expressions could still be obtained. When
we tried to use those expressions, however, we found
that they were much less accurate than corresponding
single-mode expressions are known to be.

To understand the added difficulty introduced
whern a multimode situation is addressed, let us first
consider a small hole in a transverse metal wall in a
waveguide. When a waveguide mode is incident on
that small hole, the hole is replaced, in small aperture
theory, by a magnetic dipole and/or an electric dipole
located on the wall. These dipoles are then character-
ized In terms of polarizabilities related to the size and
shape of the hole. The hole is regarded as small in
two basic ways: small compared to the waveguide
cross-section dimensions, and small compared to the
wavelengtly; these polarizabilities can thus be taken
corresponding to apertures in free space and at zero
frequency, respectively. The simplicity in small aper-
ture theory occurs because the expressions for the
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polarizabilities in free space and under static condi-
tions become particularly simple.

We now return to multimode conditions. The
size of the hole relative to the cross-section
dimensions is a function of geometry and is not
affected by whether the waveguide can carry one or
more than one propagating mode. On the other
hand, the hole size relative to free-space wavelength
X, is indeed affected by such considerations. When a
waveguide can support several propagating modes, its
cross section must be substantially larger than )\0
even though this is not so for a single-mode
waveguide., Thus, a hole that was small compared to
)\0 when the guide supported only one propagating
mode may no longer be small in that sense when the
guide supports several propagating modes. In
essence, the range of validity of the solution becomes
substantially reduced.

In our new, improved solution, this limitation is
lifted and the results are valid over a much larger
range of  aperture/obstacle dimensions. Our
improved theory shows that for transverse discon-
tinuities the resulting equivalent network differs from
that obtained from earlier theory by simple added
series or shunt elements related directly to the modal
static characteristic impedances. That simple network
modification, however, yields greatly improved accu-
racy. The fact that this improvement in accuracy can
be obtained by means of a simple network
modification makes our improved theory particularly
attractive.

In Sec. 3 below we compare numerical values
derived by the earlier theory with those obtained by
our improved theory for a specific example, namely,
plane-wave scattering by a multimode metal-strip
grating. The improvement introduced by the simple
network modifleation is seen to be dramatic.

2. OUR IMPROVED FORMULATION

In the customary small aperture/obstacle formu-
lation, and also in its extension to multimode situa-
tions {1], the dynamic kernel in the relevant integral
equation is effectively replaced by a static one. This
replacement is an approximation intended to
correspond to the wusual static phrasings in small
aperture /obstacle theory. Our new formulation also
produces static kernels for the relevant integral equa-
tions, but we keep the complete integral equations
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rigorous by appropriately redefining the modal vol-
tages and currents [2]. Then, when we solve the
relevant integral equation in the small argument
limit, the approximation involves only the ratio of
the aperture/obstacle size to the cross-section dimen-
sions, and does not relate to A,. Our new formulation
does not require the size to be small relative to \_.

As a direct result of the redefilned modal vol-
tages and currents, the equivalent networks that fol-
low from our formulation contain small additional
shunt or series elements (depending on whether we
are treating an aperture or an obstacle, respectively)
that are proportional to the modal static characteristic
impedances.

For the case of a transverse obstacle in a
waveguide, the equivalent network is in shunt across
the transmission lines representing the propagating
modes. Reference 1, in its Fig. 3, presents the gen-
eral form for this network; that network is basically
reproduced in Fig. 1 here, but we retain only three
modes for clarity. Our new formulation yields the
modified network shown in Fig. 2, where again only
three modes are retained. It is seen that the two net-
works differ only in the series elements (- Z,./2) for
each of the higher modes n that appear in Fig. 2 but
are missing from Fig. 1. The terms Z, are the static
modal characteristic impedances
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and B, is the propagation wavenumber of the n'®

mode. The modification in the network thus appears
to be minor, and is simple in form, but it greatly
improves the accuracy of the result, as shown in the
next section.

If the corresponding analysis is performed for a
transverse aperture, the added elements in each
higher mode line are in shunt rather than in series,
and each element is (—-2Y,,), where Y, is the static
modal characteristic admittance.

3. NUMERICAL COMPARISONS

In order to demonstrate the importance of the
seemingly small modifications o the network, and 0
show that the new mnetwork is dramatically more
accurate, we next present numerical comparisons for
a specific structure. The structure is the grating of
small strips shown in Fig. 3, upon which a plane wave
with TM polarization is incident at an angle of 15
‘We present numerical results for the reflected powers
in the n=0 (incident) mode and in the n=1 (third)
mode, for two different ratios of d/p, the strip width
d of the obstacle to the period p of the grating. The
computed values using the networks of Figs. 1 (old
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theory) and 2 (new theory) are compared with values
obtained from an independent reference solution,
known to be accurate [3].

For the structure shown in Fig. 3, the networks
in Figs. 1 and 2 become particularly simple in form in
the small obstacle limit. Figure 2, which incorporates
the modiflcations required by our improved theory,
then takes the form shown in Fig. 4. Again, how-
ever, the networks corresponding to the old and new
theories differ only by the added series elements that
appear in Fig. 4.

We should indicate next that the expression for
the element Y,, in Fig. 4 is found from both the old
and the new theories to be [3]

T d
Yopn =Y = -](")eoer_‘l—p(;)2

The added elements in Fig. 4 are
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It is evident that the elements that comprise the net~
work in Fig. 4 are particularly simple.

In the computations mentioned above, we con-
sidered for this comparison only three modes, the
n= 0, £ 1, consistent with the network in Fig. 4. The
reflected powers in the incident (n=0) mode are
plotted in Figs. 5 and 6 as a function of p/\,; the
unlabeled curve corresponds to the accurate reference
solution, and the other two are labeled. The ratios of
d/p are 0.1 and 0.3. As p/X\, increases, we note that
first only the incident mode can propagate, then the
n= -1 mode is also above cutoff, and finally all three
modes (n=0, n=-1 and n=1) propagate. (Higher
propagating modes correspond in the diffraction con-
text to propagating spectral orders.) The regions are
separated by cusps in the curves.

For the d/p = 0.1 case, the obstacle is really
very small, and results from both the old theory and
the new theory agree well with the reference solu-
tion, although the new theory is clearly in better
agreement. For d/p = 0.3, a much larger obstacle, it
is seen that the new theory is dramatically better than
the old one, which is evidently quite far out of its
range of validity. The agreement between the new
theory and the reference solution is excellent when
two modes are propagating, but is less good when all
three modes are above cutoff. The agreement should
improve when four modes are included in the net-
work.

The same qualitative agreement is found in Figs.
7 and 8, where the reflected power in the n= 1 higher
mode is plotted vs. p/A,. For d/p = 0.1, the agree-
ment is quite good for both the old and new theories,
but for the larger obstacle size, d/p = 0.3, the new
theory is clearly far superior.

In summary, we have developed a modifled for-
mulation for multimode small aperture/obstacle
theory, and we have shown that for transverse obsta-
cles the resulting equivalent network differs from that



obtained from the earlier theory by simple added
series elements. That simple network modification,
however, yields greatly improved accuracy, as
demonstrated in a specific example.
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Fig. 1 General form of the equivalent network
for a transverse multimode obstacle,
given in Ref. [1].
Ym,n
Fig. 2 Equivalent network corresponding to

Fig. 1, but obtained by using our
improved theory. Note that it differs
from the network in Fig. 1 by the pres-
ence of added series elements associated
with the higher modes.
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Fig. 3 Periodic grating of small metal strips,
upon which a plane wave is incident at
an angle.
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Fig. 4 Equivalent network to which the net-

work in Fig. 2 reduces when it is applied
to the grating in Fig. 3. The network is
seen to become particularly simple in

form.
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Reflected powers in the incident (n= 0)
mode as a function of relative period
p/x, for relative obstacle width d/p =
0.1. The unlabeled curve refers to the
accurate reference solution, and the
other two curves correspond to the old
and new theories, as labeled.
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Fig. 7 Reflected powers in the n=1 higher
mode as a function of relative period
p/X, for relative obstacle width d/p =
0.1. The unlabeled curve refers to the
accurate reference solution, and the
other two curves correspond to the old
and new theories, as labeled.
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